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Transient acoustic radiation from transverse vibrations of beams and beam-like struc- 
tures is obtained by modelling the structure as a series of contiguous dipoles. A time- 
dependent expression is developed for sound radiation from a dipole source by Fourier 
synthesis. Acoustic radiation from the beam is obtained by integrating the sound pressure 
from the differential dipole elements over the beam length. Time-dependent integration 
limits are used to account for the transient effects. An analogous discrete formulation is 
described for beams of arbitrary geometry and density. The radiation patterns of a uniform 
unbaflled beam are given for frequencies below and above the critical frequency. The 
results are applied to model the sound radiation from an impact-excited beam. 

1. INTRODUCTION 

Sound and vibration in mechanical systems have long been a problem of great concern. 

Requirements for higher productivity and energy efficiency have lead to the design of 

high-speed machines with lighter moving components. As a result, the problems of 

vibration, noise, stability, and wear have increased. The dynamic interaction of the 

flexibility of the light-weight components and the high-intensity impact forces developed 

in the clearances has become the major source of sound and vibration in high-speed 

mechanisms. 

Sound radiation from mechanisms may be caused by two essential sources. (1) The 

aerodynamic sources in a mechanism are due to instabilities in the air introduced by the 

motion of the system; rotating fan blades are an example. The radiated sound generated 

by the aerodynamic sources is related to the shape of the members of the mechanism, 

and the amplitudes of the sound pressure are proportional to the input speed. (2) The 

uibro-acoustic sources of a mechanism are caused by the vibrations of the members. 

These vibrations result from inertial forces and impacts due to backlash in the bearings 

of a mechanism. Vibrations resulting from the inertial forces are at the operating speed 

of the system and usually have much lower frequencies than those due to impact-excited 

vibrations. 

The dynamic response of links to impact forces can be considered in terms of forced 

and free vibrations. The axial components of the impact forces in the clearances excite 

longitudinal vibrations and the vertical components excite transverse vibrations. Axial 

impacts acting unevenly on the cross-section of the links may also induce transverse and 

torsional vibrations. An impact force induces a rapid deformation of the impacted object 

in the immediate vicinity of the contact region, which is followed by the resonant vibrations 

of the body. During contact, the impacted object may also undergo a rigid-body acceler- 

ation if it is unrestrained. 
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The acoustic radiation characteristics of an impact-excited body follow its vibration 

response [l]. The axial impact of a link or a beam induces rigid-body radiation due to 

the acceleration of the whole link where both end surfaces of the beam act like rigid 

pistons. The rigid-body radiation is followed by the resonant radiation from the beam 

ends due to its free longitudinal vibrations. In the case of transverse impact of a beam 

acoustic radiation on the axis of impact consists of a distinct pressure pulse corresponding 

to the rapid deformation of the contact area which is followed by resonant radiation 

from the bending vibrations of the beam. 

Sound radiation due to free vibrations of a link following impact in most cases dominates 

over the rigid-body radiation. Then, in the absence of external loads, total acoustic 

radiation from a link is a result of its forced and free vibrations caused by the impacts 

in the joints and the lower-frequency inertial forces. 

In earlier work on radiation from the transverse vibrations of beams steady state 

radiation was considered by exact and approximate theories [2-81. Some of these studies 

were concerned with baffled beams [2,3] and in others unbaffled beams of circular [4-61 

or elliptical [7,8] cross sections were modelled. In an extensive analytical and experi- 

mental study of radiation from beams of slender elliptical cross section, Blake [S] has 

obtained expressions for radiated power for baffled and unbaffled beams in air and water 

and studied the effects of fluid loading. His results suggested that unbaffled beams can 

be described as an array of dipoles as was done in reference [6]. 

In this paper, transient radiation from the transverse vibrations of an impacted beam- 

like link is modelled as a series of contiguous dipoles. An expression for the time- 

dependent pressure radiation from a dipole with arbitrary vibration response is developed 

and the acoustic pressure at a point in the field is obtained by considering the phase 

differences introduced by spatial and temporal distribution of these dipole elements. 

Effects of resonant radiation below and above the critical frequency are shown by plotting 

the directivity characteristics of a uniform unbaffled beam. 

Since most of the mechanical system elements do not lend themselves to exact 

closed-form solutions, some form of numerical technique is used to investigate the 

dynamic behavior of these systems. In the present method use is made of the vibration 

history obtained by finite element methods to calculate the acoustic field by using the 

finite beam elements as dipole sources. This procedure is demonstrated for a simple 

beam and the resulting pressure waveforms are compared with experimental measure- 

ments. Effects of the number of beam dipole elements to represent the beam radiation 

are shown by plotting the pressure contours for different numbers of dipoles. 

2. MODELLING OF SOUND RADIATION FROM BEAM-LIKE MEMBERS 

Radiation from transverse vibrations of a beam-like member of a mechanism may be 

modelled as an array of contiguous dipoles by treating each elemental length of the 

beam or each node of the finite element mesh and the associated transverse surface area 

as a dipole. Since the vibration characteristics of every node are calculated by solving 

the vibration problem, it is possible to calculate the resulting sound pressure from each 

dipole. 

2.1. TIME-DEPENDENT SOUND RADIATION FROM A DIPOLE 

The sound pressure radiated from a dipole made up of two simple sources of equal 

strength Q and characteristic dimension a is given by [9] 

~(r, 19, w) = (jpock&/4mr)Q e-jk’(jk + l/r) cos 8, A >>a, (1) 
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where A is the acoustic wavelength, E is the distance between the simple sources, k = O/C 

with o being the circular frequency of the radiation, r is the distance from the center 

of the dipole to the receiver point, and 19 is the angle from the plane of symmetry between 

the simple sources. p. and c are the density and the speed of sound in the surrounding 

medium. 

The strength of the source in the frequency domain can be written as 

Q(o)=Su(w), (2) 

where S is the surface area and u is the surface velocity. Then the steady state acoustic 

radiation from a dipole vibrating with a velocity u(o) can be expressed from equation 

(1) as 

~(r, 8,~) = (poS.5/47rr)u(w) e-‘k’[(l/c)(jw)2+(l/r)(jw)] cos 13. (3) 

For an arbitrary velocity, u(o), the pressure-time history can be obtained from equation 

(3) by Fourier synthesis [lo]: 

POSE 
p(r, 8, t) = G cos 8 $ _* J [ o. (jo)‘+$o)]u(o) e-j” ‘r’c e’“’ dw. 

By utilizing the shift theorem in Fourier transforms, equation (4) can be written as 

(5) 

Multiplication of the integrand by jw corresponds to taking its derivative with respect 

to time; therefore, equation (5) becomes 

(6) 

The integral in equation (6) is the Fourier transform of u(t), which is given by 

u(t)=& _m 
J 

u (co) e’“’ dw. 
co 

Then equation (6) becomes 

P(r, 8, t +r/c) = (poS~/4~r)[(l/c)a2u(t)/at2 + (l/r)au(t)/at] cos 8. (7) 

Upon shifting the time co-ordinates once again, equation (7) takes the form 

P(r e t)_PoS& 1 a2u(t--rlc)+1au(c-r/c) 
9 7 

[ 4~ cr at* r* 1 ~0~8. at 
(8) 

Equation (8) gives the time-dependent sound radiation from a dipole with arbitrary 

surface acceleration. In equation (8), the term (l/r’)au(t -r/c)/13 represents the near 

field radiation and loses effectiveness in the far field where the term (l/cr)a2u (t - r/c)/at* 

becomes dominant. 

2.2. TRANSIENT RADIATION FROM AN ARRAY OF DIPOLES 

Total acoustic pressure at any field point resulting from an array of dipoles can be 

found by summation of the contributions of individual dipoles at this point. Sound 

pressure at a point (r, 8, 4) from each element of an array of dipoles can be written in 

the frequency domain, by using equation (3), as 

P(r, 8, *, 0) = (pO&(x)/4d)u (x, w) e-jk”[(l/c)(jo)’ + (l/r’)(jw)] cos 8 sin 4, (9) 
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and in the time domain, from equation (8), as 

P(r e 4 t)=PoSf(x) L a’U(x, t-r’lc)+i au(x, t -r’/c) 
, 9 , 

[ 47rr’  c at2 r’ at I cos H sin *, (10) 

where the axis of the dipole array coincides with the x axis (f? = n/2, IJ = 7~12) and r’ is 

the distance from each dipole to the receiver point as shown in Figure 1. 

Figure 1. The geometry of the problem. 

In the case of a continuous array of dipoles, such as a transversely vibrating thin beam, 

the sound pressure at a field point can be found by considering the beam as an array of 

infinitesimal dipoles with differential surface areas S = b(x) dx, where b(x) is the non- 

uniform beam width. Sound pressure at a point (r, 19, ((I) is obtained by integrating the 

differential pressure expression for elemental dipoles over the length of the beam. Then 

the total pressure in the frequency domain is 

P(r,e,~,O)=~cosBsin~l b(X)E(X)1((X,~)[&(j~)2+-$(j~)]e-’*”dx, (11) 
L 

and in the time domain is 

where r’ = [x2- 2xr sin $ sin 0 +r211” is the distance from the receiver point to each 

differential dipole element. 

For steady state radiation problems the integrals in equations (11) and (12) are carried 

out over the length of the beam. Time delay in the arrival of sound waves at the receiver 

point due to differences in distance from the dipole elements along the beam is taken 

into account by the phase-shift term exp (-jkr’) or by the time-delay term (t -r’/c) in 

equations (11) and (12), respectively. In the case of transient radiation problems, the 

integral limits In equation (12) must be time-dependent to account for the additional 

phase-shift introduced by the earlier arrival of sound waves from closer parts of the 

beam at the start of radiation. Similarly, time-dependent integral limits are used at the 

conclusion of a transient radiation to allow for the late arrival of the sound waves from 

the distant parts. 
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Acoustic radiation from a beam with complex shape and arbitrary vibration response 

can be found by numerically integrating the integral in equation (12). In cases where 

the complex vibratory response of a beam or beam-like element is obtained at discrete 

points by using numerical techniques, the corresponding acoustic radiation can be 

obtained by summation of the pressure from each of these discrete dipole elements that 

make up the beam. 

In the study described here, transient sound radiation from an impact-excited beam 

was obtained by using a finite number of dipole sources representing the beam. The 

total sound pressure at a point (r, 8, $) at time t this was obtained by summation of the 

sound pressure from each dipole element with appropriate time delay, 

t > rmiJC, (13) 

where n is the number of dipoles used to represent the beam, t’ = t - ri/c, pi and ri are 

the sound pressure and the distance from dipole element i to the receiver point, and 

rmin is the smallest value of ri. 

As discussed earlier, in transient radiation problems, initially the limit of summation 

in equation (13) is determined from the geometry of the source array and the receiver 

point and the delay time between these points. After time t = rmax/c all n dipoles 

contribute to the total sound pressure. 

2.3. RADIATION PATTERNS OF AN UNBAFFLED FINITE BEAM 

Acoustic radiation from a finite beam is better approximated with a higher number 

of dipoles in the present model. The number of dipoles used determines the frequency 

range of the model, and must be equal to or larger than the number of the highest mode 

of interest. In addition, since the beam segments are represented by rigid pistons, using 

a higher number of dipoles provides a closer approximation of the beam curvature. From 

the analysis in reference [8], the distance E between the simple sources of the dipoles 

is found to be E = b/2*55, where b is the width of the beam. The dependence of E on 

beam width follows from the definition of dipoles which are used to model force 

fluctuations. In the present case, the forces acting on the surrounding medium of an 

elemental beam length due to its transverse vibrations are effected primarily by the beam 

width rather than by its thickness. 

Steady state radiation from a simply supported beam at its mth mode can be written 

as 

h(r, 0, rL, t) 

POAEl47F 
= sin I/I i Si COS 8i 

i=l [, 
az sin [W m(t - rJC)] 

-$COS [o,(t -Q/C)]]{ fo ~~T$~~, ~~~~}, (14) 
I 

where x varies between -L/2 and L/2, and the co-ordinates are measured from the 

geometric center of the beam. Si is the surface area of each dipole element and A is the 

acceleration amplitude of the beam vibrations. Loci of the sound pressure calculated 

from equation (14) have been plotted for different modes of a 24 cm x 1.5 cm x O-7 cm 

steel beam to show radiation directivity along its length. Figure 2 shows the directivity 

patterns for the first to the sixth mode as obtained by using one to six dipoles, respectively. 

For comparison purposes, radiation from the sixth mode is plotted in Figure 3 as obtained 

by using three, 12 and 24 dipoles, and the results are compared with the directivity 

pattern obtained by using equation (12). It is apparent that using a number of dipoles 
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Figure 2. Sound radiation pattern of a beam at different modes at R/L = 4. n = number of dipoles. 
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Figure 3. Sound radiation pattern of a beam at its sixth mode modelled with 3, 12 and 24 discrete dipoles, 

and by continuous integral (equation (12)). 

less than the mode number is inadequate. For the correct prediction of directivity and 

the amplitude, the number of dipoles must be equal to or larger than the highest mode 

number of interest. Increasing the dipole number further gives results closer to those 

obtained from the integral equations (11) and (12), but without substantial improvement. 

Directivity patterns for the second and fifth modes are given in Figures 4(a) and (b) for 

different distances. An apparent difference is the change of the directivity characteristics 

of these modes with distance which will be discussed further. 

3. ACOUSTIC AND VIBRATION RESPONSE OF AN IMPACTED BEAM 

3.1. VIBRATION RESPONSE 

Flexural vibrations of a beam-like member of a mechanism resulting from impact 

forces in the joints can be obtained analytically with finite elements. The number of 
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r/L = 2.0 

r/L = 0.0 

(a) (b) 

Figure 4. Radiation pattern for the (a) second mode and (b) fifth mode of the beam at different distances. 

nodes selected to represent the beam determines the number of eigenmodes and the 

spectral accuracy of the resulting sound pressure field. 

The present transient vibration problem requires solving a second-order time-depen- 

dent non-homogeneous matrix differential equation [ 111, 

[Ml{li((t)}+[Cl{f(t)}+[Kl{x(t)} = v-w, (15) 

where {x(t)}, {i(t)} and {i(t)} are displacement, velocity and acceleration vectors, {F(t)} 

is the time-dependent force vector, and [Ml, [C] and [K] are the mass, damping and 

stiffness matrices constructed by the finite element method, which can be found in 

standard textbooks on finite elements [ll]. The values of [M] and [K] depend on the 

material and geometry of the beam. The value for the equivalent damping coefficient 

was measured for each beam. The force vector {F(t)} is made up of the impact forces 

and the unknown reaction forces at the supports. The reaction forces and the correspond- 

ing differential equations are excluded from the matrix equation (15). 

The time-dependent coupled differential equations (15) have been solved numerically 

by using the Newmark Method [12]. During the contact period the acceleration was 

calculated from the impact force values at each time step. After the impact force ceased 

average acceleration was used. 

3.2. IMPACT FORCES 

The impact forces can be calculated by using Hertz contact theory [13] for the cases 

of impact of a spherical object on a flat body and for the impact of a pin and socket 

[14]. The impact force developed between a sphere and a flat surface can be described 
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as 
F(t)=k2art)’ ‘, (16) 

where a(t) is the relative approach of the center of gravity of the impacting bodies during 

contact and is described by: 

u(t) =cy,, sin (7~/~)t, 

where (Y, is the maximum value of a (t) and is equal to a,, = [5u~/4klkz](J’4 for an impact 

velocity uo. The contact duration T is described by 

r = 2.9432 CY,/U~. 

The quantities k 1 and k2 depend on the material properties and geometric configurations 

of the impacting objects. For the impact of a spherical object on a flat body [13], kl = l/m 

and kZ = 4Ja/37r(S1 +&), where m is the mass of the sphere of radius a. 

For the impact of a pin in a socket, the relationship between the force and the approach, 

(Y, is given in reference [14] as 

cx =F{ln [(r, -r2)8a3 e/rlrz(61 +Sz)]-lnF}[(61+62)/21], (17) 

where rl, r2 are the pin and socket diameters, 21 is the length of the pin in the connection, 

and e is the natural logarithm base. The material properties 6r and S2 depend on the 

elasticity modulus E, and on Poisson’s ratio p of the ball and flat body or pin and socket, 

respectively: S = (1 -p2)/.lrE. Equation (17) has been used with reference [15] to obtain 

the forces developed in the pin connection due to impacts. 

4. EXPERIMENTS 

A set of experiments was designed to measure the sound pressure waveforms from 

beams corresponding to the theoretical analysis presented. All the sound pressure 

measurements were made in an anechoic chamber using a i inch diameter free-field 

microphone. 

Transient radiation waveforms were measured by impacting a simply supported 1.1 m x 

0.032 m x 0.0095 m aluminum beam at its mid-point by a 1.9 cm diameter Plexiglass 

ball. Acceleration response of the beam was measured on the opposite side of the beam 

from the impact point using a subminiature accelerometer. Pressure waveforms were 

obtained using a storage oscilloscope triggered by the acceleration signal. 

A specially designed experimental four-bar mechanism was used to measure the sound 

pressure waveforms corresponding to the theoretical prediction of radiation. For clear- 

ances in the joints of the mechanism less than 10 pm, the sound and vibration responses 

of the links were not appreciable except at the low operational frequency of the mechan- 

ism. However, a larger clearance was set up at the ground-rocker joint to generate 

impact of the pin in the sleeve bearing, causing higher frequency vibrations and sound 

radiation from the rocker. The resulting intermittent transient waveforms were measured 

at a distance of 0.5 m in the direction of motion of the rocker. 

5. RESULTS 

The theoretical vibration response corresponding to the simply supported aluminum 

beam impacted by a 1.90 cm diameter Plexiglass sphere was obtained by a finite element 

method with 18 elements. The impact force was computed by using the Hertz theory 

described earlier. The resulting transient radiation from the beam was calculated by 
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using equations (10) and (15). An example of the computed and measured sound pressure 

waveforms at the point P(l m, 0”, 90’) are given in Figures 5(a) and (b), respectively. 

The time increment used in this computation was 50 IJ,s. Larger values for the time 

increment resulted in distortions of the pressure waveform. The initial pulse starting at 

time zero in Figures 5(a) and (b) is the radiation due to forced deformation of the beam 

during impact which precedes the radiation due to free vibrations of the beam. 

2 
I I I I 

(bl 
I I I I 

(0) 
I .I 1 

Time (s) 

Figure 5. Transient sound pressure at point P (1 m, o”, 90”) (a) calculated with 50 ps time increments; 
(b) measured. 

Similar theoretical pressure waveforms were obtained for the rocker of a four-bar 

mechanism with a clearance at the ground-rocker joint. Impact force direction and 

magnitude and the transverse vibration response of the rocker were computed as 

described in section 3. The computed and measured waveforms at the point P (0.5 m, 

O”, 90’) are shown in Figures 6(a) and (b) for a crank speed of 500 rpm. 

Time (s) 

Figure 6. Transient sound pressure radiation from the follower at 500rpm, at point P (0.5 m, O’, 90”). 
(a) Calculated; (b) measured. 

6. DISCUSSION AND CONCLUSIONS 

Directivity patterns of a simply supported unbaffled beam are shown in Figures 2-4. 

In Figure 2, the directivity patterns for the first two modes correspond to one and two 
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out-of-phase dipoles, respectively. Each dipole represents radiation from each half- 

wavelength of the beam. Above the third mode radiation configurations show two primary 

lobes from each side of the beam. This directivity pattern follows the general radiation 

characteristics from bending waves of a beam. Below the critical frequency fc the 

radiation pattern for each mode of a finite unbaffled beam displays a number of lobes 

from each side of the beam equal to the mode number of beam resonance. The 

interference patterns of the pressure waves from various parts of the beam do not change 

appreciably with distance from the beam, as shown in Figure 4(a). Above the critical 

frequency, the radiation mechanism is different and the pressure waves have preferred 

directions. Radiation at any mode above the critical frequency shows two primary lobes 

at each side of the beam. The direction of these lobes can be found from 8 = *sin-’ (c/es) 

where cB is the speed of bending waves of the beam. The computed values of 8 and the 

corresponding values in Figure 2 are in excellent agreement. The analogy of the radiation 

characteristics between finite beams and infinite beams or plates becomes apparent when 

the standing waves in the resonant modes of a beam are considered as two bending 

waves traveling in opposite directions, thus radiating sound as in infinite beams or plates. 

Unlike radiation patterns below the critical frequency, directivity above f( shows 

significant changes with distance as shown in Figure 4(b), indicating a strong reactive 

field near the beam. 

In this paper acoustic radiation from transverse vibrations of non-uniform beams and 

beam-like structures has been modelled by representing the beam as an array of con- 

tiguous dipoles. A time-dependent expression was developed for steady state and 

transient radiation problems. Both a continuous dipole array model, with an integral 

expression, and a discrete model, with a finite number of dipoles, have been developed. 

It was shown that for a number of discrete dipoles higher than the highest mode 

number these models agree with each other. The general waveform characteristics and 

the pressure amplitudes from the analytical models and the measurements also agree 

reasonably well. 

The dipole modelling of transverse vibrations is strictly valid for vibrating objects of 

small cross section in terms of the acoustic wavelength, such as strings. In cases of beams 

of slender cross section, dipole modelling is a good approximation of the acoustic radiation 

provided that the cancellation effects of the dipoles is not strongly affected by the beam 

width. In reference [8] a good discussion of the limitations due to width effects is given 

and it was shown that the dipole source strength is primarily determined by the beam 

width. The analytical results in reference [8] also show that the characteristic dimension 

of the dipole, c/2, is equivalent to approximately one-fifth of the beam width. 

In the present model both the near and far field terms of the dipoles have been 

included. The effect of distance on the radiation pattern is shown in Figures 4(a) and 

(b) for the second and fifth modes. Radiation from the fifth mode converges to two 

major lobes at distances r/L 2 4. The second mode shows only minor changes in direction 

with distance. 

The models presented here can be used as a design tool to obtain the radiated acoustic 

power from complex shaped slender beams excited by transient forces. 

ACKNOWLEDGMENT 

The authors wish to acknowledge their gratitude to the National Science Foundation’s 

Mechanical Systems Program for the support of this study under Grant No. CME79- 

21242, and would like to thank the reviewers for their valuable comments. 



TRANSIENT RADIATION FROM IMPACTED BEAMS 145 

REFERENCES 

1. A. AKAY 1978 Journal of the Acoustical Society of America 64,977-987. A review of impact 
noise. 

2. R. H. LYON and G. MAIDANIK 1962 Journal of the Acoustical Society of America 34, 

623-639. Power flow between linearly coupled oscillators. 
3. C. E. WALLACE 1972 Journal of the Acoustical Society of America 51, 936-945. Radiation 

resistance of a baffled beam. 
4. J. R. BAILEY and F. J. FAHY 1972 Journal of Engineering for Industry 94, 139-147. Radiation 

and response of cylindrical beams excited by sound. 
5. S. N. YOUSRI and F. J. FAHY 1973 Journal of Sound and Vibration 26, 437-439. Sound 

radiation from transversely vibrating unbaffled beams. 
6. M. C. JUNGER 1972 Journalof the AcousticalSociety ofAmerica 52,332-334. Sound radiation 

by resonances of free-free beams. 
7. R. A. JOHNSTON and A. D. S. BARR 1969 Journal Mechanical Engineering Science 11, 

117-127. Acoustic and internal damping in uniform beams. 
8. W. K. BLAKE 1974 Journalof Sound and Vibration 33,427-450. The radiation from free-free 

beams in air and in water. 
9. L. E. KINSLER and A. R. FREY 1962 Fundamentals of Acoustics. New York: John Wiley 

and Sons, Inc. 
10. A. AKAY 1981 (unpublished). A note on transient radiation from a rigid piston in an infinite 

baffle. 

11. K. H. HUEBNER 1975 The Finite Element Method for Engineers. New York: John Wiley and 

Sons, Inc. 
12. K. J. BATHE and E. L. WILSON 1976 Numerical Methods in Finite Element Analysis. New 

York: Prentice-Hall, Inc. 
13. W. GOLDSMITH 1960 Impact. London: Edward Arnold (Publishers) Ltd. 
14. S. DUBOWSKY and F. FREUDENSTEIN 1971 Journal of Engineering for Industry 93,305-309. 

Dynamic analysis of mechanical systems with clearances. 
15. S. TIMOSHENKO and J. N. GOODIER 1970 Theory of Elasticity. New York: McGraw-Hill 

Book Company, third edition. See Chapter 12. 


